サイトメニューここからこのページの先頭です

ショートカットキーの説明を開始します。画面遷移や機能実行は、説明にあるショートカットキーを同時に押した後、Enterキーを押してください。ショートカットキーの説明を聞くには、Alt+0。トップ画面の表示には、Alt+1。ログインを行うには、Alt+2。簡易検索画面の表示には、Alt+3。詳細検索画面の表示には、Alt+4。障害者向け資料検索画面の表示には、Alt+5。検索結果の並び替えを行うには、Alt+6。国立国会図書館ホームページの表示には、Alt+7。検索結果の絞り込みを行うには、Alt+8。以上でショートカットキーの説明を終わります。

ナビゲーションここから

ナビゲーションここまで

本文ここから

資料種別 図書

Principles of structural design : wood, steel, and concrete

Ram S. Gupta

詳細情報

タイトル Principles of structural design : wood, steel, and concrete
著者 Ram S. Gupta
出版地(国名コード) US
出版地Boca Raton
出版社CRC Press
出版年月日等 [2011]
大きさ、容量等 xv, 472 pages ; 27 cm
注記 ISBN : 9781420073393 (hardcover : alk. paper)
注記 機器種別 : unmediated
注記 キャリア種別 : volume
注記 表現種別 : text
ISBN 9781420073393
LC番号 2010006796
出版年(W3CDTF) 2011
件名(キーワード) Structural design
件名(キーワード) Building materials
NDLC NA71
LCC TA633
DDC 624.1/771
対象利用者 一般
資料の種別 図書
言語(ISO639-2形式) eng : English

目次
 

  • Principles of structural design :wood, steel, and concrete
  • Contents
  • Preface xiii
  • Author xv
  • PART I Design Loads
  • PART I Chapter 1 Design Criteria 3
  • PART I Chapter 1 Classification of Buildings 3
  • PART I Chapter 1 Building Codes 3
  • PART I Chapter 1 Standard Unit Loads 3
  • PART I Chapter 1 Tributary Area 4
  • PART I Chapter 1 Working Stress Design, Strength Design, and Unified Design of Structures 7
  • PART I Chapter 1 Elastic and Plastic Designs 10
  • PART I Chapter 1 Elastic Moment Capacity 12
  • PART I Chapter 1 Plastic Moment Capacity 12
  • PART I Chapter 1 The Combination of Loads 15
  • PART I Chapter 1 Problems 18
  • PART I Chapter 2 Primary Loads: Dead Loads and Live Loads 23
  • PART I Chapter 2 Dead Loads 23
  • PART I Chapter 2 Live Loads 24
  • PART I Chapter 2 Floor Live Loads 24
  • PART I Chapter 2 Basic Design Live Load,Lo 24
  • PART I Chapter 2 Effective Area Reduction Factor 24
  • PART I Chapter 2 Other Provisions for Floor Live Loads 26
  • PART I Chapter 2 Roof Live Loads, Lr 27
  • PART I Chapter 2 Tributary Area Reduction Factor, R1 27
  • PART I Chapter 2 Slope Reduction Factor 27
  • PART I Chapter 2 Problems 28
  • PART I Chapter 3 Snow Loads 31
  • PART I Chapter 3 Introduction 31
  • PART I Chapter 3 Balanced Snow Load 31
  • PART I Chapter 3 Importance Factor 33
  • PART I Chapter 3 Thermal Factor, Ct 34
  • PART I Chapter 3 Exposure Factor, Ce 34
  • PART I Chapter 3 Roof Slope Factor, Cs 35
  • PART I Chapter 3 Rain-on-Snow Surcharge 35
  • PART I Chapter 3 Partial Loading of the Balanced Snow Load 37
  • PART I Chapter 3 Unbalanced Snow Load due to Drift 37
  • PART I Chapter 3 Across the Ridge Snow Drift on a Roof 37
  • PART I Chapter 3 Snow Drift from a Higher to a Lower Roof 39
  • PART I Chapter 3 Leeward Snow Drift 40
  • PART I Chapter 3 Windward Snow Drift 41
  • PART I Chapter 3 Sliding Snow Load on Lower Roof 43
  • PART I Chapter 3 Problems 45
  • PART I Chapter 4 Wind Loads 47
  • PART I Chapter 4 Introduction 47
  • PART I Chapter 4 The Simplified Procedure for MWFRS 47
  • PART I Chapter 4 Horizontal Pressure Zones for MWFRS 53
  • PART I Chapter 4 Vertical Pressure Zones for MWFRS 53
  • PART I Chapter 4 Minimum Pressure for MWFRS 54
  • PART I Chapter 4 The Simplified Procedures for Components and Cladding 61
  • PART I Chapter 4 Minimum Pressures for Components ancl Cladding 67
  • PART I Chapter 4 Problems 68
  • PART I Chapter 5 Earthquake Loads 71
  • PART I Chapter 5 Seismic Forces 71
  • PART I Chapter 5 Seismic Parameters 71
  • PART I Chapter 5 Fundamental Period of Structure 71
  • PART I Chapter 5 Ground Spectral Response Maps 75
  • PART I Chapter 5 Adjusted Spectral Response Accelerations 75
  • PART I Chapter 5 Design Spectral Acceleration 79
  • PART I Chapter 5 Design Response Spectrum 80
  • PART I Chapter 5 Importance Factor,I 83
  • PART I Chapter 5 Seismic Design Categories 83
  • PART I Chapter 5 Exemptions from Seismic Designs 84
  • PART I Chapter 5 Equivalent Lateral Force Procedure to Determine Seismic Force 84
  • PART I Chapter 5 Effective Weight of Structure, W 85
  • PART I Chapter 5 Seismic Response Coefficient, Cs 85
  • PART I Chapter 5 Response Modification Factor, R 85
  • PART I Chapter 5 Distribution of Seismic Forces 86
  • PART I Chapter 5 Distribution of Seismic Forces on Vertical Wall Elements 86
  • PART I Chapter 5 Distribution of Seismic Forces on Horizontal Elements (Diaphragms) 87
  • PART I Chapter 5 Design Earthquake Load 88
  • PART I Chapter 5 Problems 92
  • PART II Wood Structures
  • PART II Chapter 6 Wood Specifications 97
  • PART II Chapter 6 Engineering Properties of Sawn Lumber 97
  • PART II Chapter 6 Reference Design Values for Sawn Lumber 97
  • PART II Chapter 6 Adjustments to the Reference Design Values for Sawn Lumber 98
  • PART II Chapter 6 Time Effect Factor, λ 99
  • PART II Chapter 6 Size Factor, CF 100
  • PART II Chapter 6 Size Factor, CF for Dimension Lumber 100
  • PART II Chapter 6 Size Factor, CF for Timber 100
  • PART II Chapter 6 Repetitive Member Factor,Cr 100
  • PART II Chapter 6 Format Conversion Factor, KF 100
  • PART II Chapter 6 Resistance Factor,Φ 101
  • PART II Chapter 6 LRFD Design with Wood 101
  • PART II Chapter 6 Structural Glued Laminated Timber 107
  • PART II Chapter 6 Reference Design Values for GLULAM 107
  • PART II Chapter 6 Adjustment Factors for GLULAM 108
  • PART II Chapter 6 Flat Use Factor for GLULAM, Cfu 108
  • PART II Chapter 6 Volume Factor for GLULAM, Cv 110
  • PART II Chapter 6 Curvature Factor for GLULAM, Cc 110
  • PART II Chapter 6 Structural Composite Lumber 112
  • PART II Chapter 6 Problems 113
  • PART II Chapter 7 Flexure and Axially Loaded Wood Structures 117
  • PART II Chapter 7 Introduction 117
  • PART II Chapter 7 Design of Beams 117
  • PART II Chapter 7 Bending Criteria of Design 117
  • PART II Chapter 7 Beam Stability Factor, CL 118
  • PART II Chapter 7 Effective Unbraced Length 120
  • PART II Chapter 7 Shear Criteria 122
  • PART II Chapter 7 Deflection Criteria 123
  • PART II Chapter 7 Bearing at Supports 127
  • PART II Chapter 7 Bearing Area Factor, Cb 128
  • PART II Chapter 7 Design of Axial Tension Members 129
  • PART II Chapter 7 Design of Columns 132
  • PART II Chapter 7 Column Stability Factor, Cp 132
  • PART II Chapter 7 Design for Combined Bending and Compression 135
  • PART II Chapter 7 Problems 139
  • PART II Chapter 8 Wood Connections 145
  • PART II Chapter 8 Types of Connections and Fasteners 145
  • PART II Chapter 8 Dowel-Type Fasteners (Nails, Screws, Bolts, Pins) 145
  • PART II Chapter 8 Yield Limit Theory for Laterally Loaded Fasteners 146
  • PART II Chapter 8 Yield Mechanisms and Yield Limit Equations 147
  • PART II Chapter 8 Reference Design Values for Lateral Loads (Shear Connections) 148
  • PART II Chapter 8 Reference Design Values for Withdrawal Loads 149
  • PART II Chapter 8 Adjustments of the Reference Design Values 149
  • PART II Chapter 8 Wet Service Factor, CM 149
  • PART II Chapter 8 Temperature Factor, Ct 149
  • PART II Chapter 8 Group Action Factor,Cg 149
  • PART II Chapter 8 Geometry Factor, CΔ 151
  • PART II Chapter 8 End Grain Factor, Ceg 153
  • PART II Chapter 8 Diaphragm Factor, Cdi 153
  • PART II Chapter 8 Toenail Factor, Ctn 153
  • PART II Chapter 8 Nail and Screw Connections 155
  • PART II Chapter 8 Nails 156
  • PART II Chapter 8 Wood Screws 156
  • PART II Chapter 8 Bolt and Lag Screw Connections 158
  • PART II Chapter 8 Bolts 158
  • PART II Chapter 8 Lag Screws 158
  • PART II Chapter 8 Problems 160
  • PART III Steel Structures
  • PART III Chapter 9 Tension Steel Members 167
  • PART III Chapter 9 Properties of Steel 167
  • PART III Chapter 9 The 2005 Unified Design Specifications 167
  • PART III Chapter 9 Limit States of Design 168
  • PART III Chapter 9 Design of Tension Members 169
  • PART III Chapter 9 Tensile Strength of Elements 169
  • PART III Chapter 9 Net Area, An 170
  • PART III Chapter 9 Shear Lag Factor for Unattached Elements 171
  • PART III Chapter 9 Block Shear Strength 172
  • PART III Chapter 9 Design Procedure for Tension Members 174
  • PART III Chapter 9 Problems 177
  • PART III Chapter 10 Compression Steel Members 181
  • PART III Chapter 10 Strength of Compression Members or Columns 181
  • PART III Chapter 10 Local Buckling Criteria 182
  • PART III Chapter 10 Flexural Buckling Criteria 182
  • PART III Chapter 10 Effective Length Factor for Slenderness Ratio 182
  • PART III Chapter 10 Limit States for Compressive Strength 186
  • PART III Chapter 10 Non-Slender Members 186
  • PART III Chapter 10 Flexural Buckling of Non-Slender Members in Elastic and Inelastic Regions 186
  • PART III Chapter 10 Inelastic Buckling 187
  • PART III Chapter 10 Elastic Buckling 187
  • PART III Chapter 10 Torsional and Flexural-Torsional Buclding of Non-Slender Members 188
  • PART III Chapter 10 Slender Compression Members 188
  • PART III Chapter 10 Use of the Compression Tables 188
  • PART III Chapter 10 Problems 192
  • PART III Chapter 11 Flexural Steel Members 199
  • PART III Chapter 11 The Basis of Design 199
  • PART III Chapter 11 Nominal Strength of Steel in Flexure 199
  • PART III Chapter 11 Lateral Unsupported Length 199
  • PART III Chapter 11 Fully Plastic Zone with Adequate Lateral Support 201
  • PART III Chapter 11 Inelastic Lateral Torsional Buckling (I-LTB) Zone 201
  • PART III Chapter 11 Elastic Lateral Torsional Buckling (E-LTB) Zone 201
  • PART III Chapter 11 Slender Beam Sections 201
  • PART III Chapter 11 Compact Full Plastic Limit 202
  • PART III Chapter 11 Noncompact Flange Local Buckling (N-FLB) 203
  • PART III Chapter 11 Slender Flange Local Buckling (S-FLB) 203
  • PART III Chapter 11 Summary of Beam Relations 204
  • PART III Chapter 11 Design Aids 204
  • PART III Chapter 11 Shear Strength of Steel 206
  • PART III Chapter 11 Beam Deflection Limitations 207
  • PART III Chapter 11 Problems 209
  • PART III Chapter 12 Combined Forces on Steel Members 213
  • PART III Chapter 12 Design Approach to the Combined Forces 213
  • PART III Chapter 12 Combination of Tensile and Flexure Forces 213
  • PART III Chapter 12 Combination of Compression and Flexure Forces: The Beam-Column Members 215
  • PART III Chapter 12 Members without Sidesway 215
  • PART III Chapter 12 Members with Sidesway 216
  • PART III Chapter 12 Magnification Factor, B1 216
  • PART III Chapter 12 Moment Modification Factor, Cm 217
  • PART III Chapter 12 Braced Frame Design 218
  • PART III Chapter 12 Magnification Factor for Sway, B2 223
  • PART III Chapter 12 Unbraced Frame Design 225
  • PART III Chapter 12 Open-Web Steel Joists 229
  • PART III Chapter 12 Joist Girders 232
  • PART III Chapter 12 Problems 234
  • PART III Chapter 13 Steel Connections 241
  • PART III Chapter 13 Types of Connections and Joints 241
  • PART III Chapter 13 Bolted Connections 241
  • PART III Chapter 13 Specifications for Spacing of Bolts and Edge Distance 244
  • PART III Chapter 13 Bearing-Type Connections 245
  • PART III Chapter 13 Slip-Critical Connections 249
  • PART III Chapter 13 Tensile Load on Bolts 251
  • PART III Chapter 13 Combined Shear and Tensile Forces on Bolts 252
  • PART III Chapter 13 Combined Shear and Tension on Bearing-Type Connections 252
  • PART III Chapter 13 Combined Shear and Tension on Slip-Critical Connections 255
  • PART III Chapter 13 Welded Connections 256
  • PART III Chapter 13 Fillet Welds 257
  • PART III Chapter 13 Effective Area of Weld 257
  • PART III Chapter 13 Minimum Size of Weld 258
  • PART III Chapter 13 Maximum Size of Weld 258
  • PART III Chapter 13 Length of Weld 258
  • PART III Chapter 13 Strength of Weld 258
  • PART III Chapter 13 Complete Joint Penetration (CJP) Groove Welds 258
  • PART III Chapter 13 Partial Joint Penetration (PJP) Welds and Fillet Welds 258
  • PART III Chapter 13 Frame Connections 261
  • PART III Chapter 13 Shear or Simple Connection for Frames 262
  • PART III Chapter 13 Single-Plate Shear Connection or Shear Tab 262
  • PART III Chapter 13 Framed-Beam Connection 262
  • PART III Chapter 13 Seated-Beam Connection 262
  • PART III Chapter 13 End-Plate Connection 262
  • PART III Chapter 13 Single-Plate Shear Connection for Frames 263
  • PART III Chapter 13 Moment-Resisting Connection for Frames 266
  • PART III Chapter 13 Problems 268
  • PART IV Reinforced Concrete Structures
  • PART IV Chapter 14 Flexural Reinforced Concrete Members 277
  • PART IV Chapter 14 Properties of Reinforced Concrete 277
  • PART IV Chapter 14 Compression Strength of Concrete 277
  • PART IV Chapter 14 Design Strength of Concrete 278
  • PART IV Chapter 14 Strength of Reinforcing Steel 279
  • PART IV Chapter 14 LRFD Basis of Concrete Design 279
  • PART IV Chapter 14 Reinforced Concrete Beams 280
  • PART IV Chapter 14 Derivation of the Beam Relations 280
  • PART IV Chapter 14 The Strain Diagram and Modes of Failure 282
  • PART IV Chapter 14 Balanced and Recommended Steel Percentages 283
  • PART IV Chapter 14 Minimum Percentage of Steel 284
  • PART IV Chapter 14 Strength Reduction Factor for Concrete 284
  • PART IV Chapter 14 Specifications for Beams 284
  • PART IV Chapter 14 Analysis of Beams 285
  • PART IV Chapter 14 Design of Beams 287
  • PART IV Chapter 14 Design for Reinforcement Only 287
  • PART IV Chapter 14 Design of Beam Section and Reinforcement 288
  • PART IV Chapter 14 One-Way Slab 290
  • PART IV Chapter 14 Specifications for Slabs 291
  • PART IV Chapter 14 Analysis of One-Way Slab 292
  • PART IV Chapter 14 Design of One-Way Slab 293
  • PART IV Chapter 14 Problems 294
  • PART IV Chapter 15 Shear and Torsion in Reinforced Concrete 299
  • PART IV Chapter 15 Stress Distribution in Beam 299
  • PART IV Chapter 15 Diagonal Cracking of Concrete 300
  • PART IV Chapter 15 Strength of Web (Shear) Reinforced Beam 301
  • PART IV Chapter 15 Shear Contribution of Concrete 302
  • PART IV Chapter 15 Shear Contribution of Web Reinforcement 303
  • PART IV Chapter 15 Specifications for Web (Shear) Reinforcement 304
  • PART IV Chapter 15 Analysis for Shear Capacity 305
  • PART IV Chapter 15 Design for Shear Capacity 307
  • PART IV Chapter 15 Torsion in Concrete 310
  • PART IV Chapter 15 Provision for Torsional Reinforcement 311
  • PART IV Chapter 15 Problems 313
  • PART IV Chapter 16 Compression and Combined Forces Reinforced Concrete Members 321
  • PART IV Chapter 16 Types of Columns 321
  • PART IV Chapter 16 Pedestals 321
  • PART IV Chapter 16 Columns with Axial Loads 321
  • PART IV Chapter 16 Short Columns with Combined Loads 321
  • PART IV Chapter 16 Large or Slender Columns with Combined Loads 321
  • PART IV Chapter 16 Axially Loaded Columns 322
  • PART IV Chapter 16 Strength of Spirals 323
  • PART IV Chapter 16 Specifications for Columns 324
  • PART IV Chapter 16 Analysis of Axially Loaded Columns 325
  • PART IV Chapter 16 Design of Axially Loaded Columns 327
  • PART IV Chapter 16 Short Columns with Combined Loads 329
  • PART IV Chapter 16 Effects of Moment on Short Columns 330
  • PART IV Chapter 16 Only Axial Load Acting (Case 1) 330
  • PART IV Chapter 16 Large Axial Load and Small Moment (Small Eccentricity) (Case 2) 331
  • PART IV Chapter 16 Large Axial Load and Moment Larger Than Case 2 Section (Case 3) 331
  • PART IV Chapter 16 Large Axial Load and Moment Larger Than Case 3 Section (Case 4) 331
  • PART IV Chapter 16 Balanced Axial Load and Moment (Case 5) 332
  • PART IV Chapter 16 Small Axial Load ancl Large Moment (Case 6) 332
  • PART IV Chapter 16 No Appreciable Axial Load and Large Moment (Case 7) 333
  • PART IV Chapter 16 Characteristics of the Interaction Diagram 334
  • PART IV Chapter 16 Application of the Interaction Diagram 334
  • PART IV Chapter 16 Analysis of Short Columns for Combined Loading 335
  • PART IV Chapter 16 Design of Short Columns for Combined Loading 336
  • PART IV Chapter 16 Long or Slender Columns 338
  • PART IV Chapter 16 Problems 338
  • Appendix A: General 343
  • Appendix B: Wood 349
  • Appendix C: Steel 391
  • Appendix D: Concrete 443
  • References and Bibliography 463
  • Index 465
  • Index
  • A
  • American Concrete Institute(ACI), 8,278-279,281,283-284,303-304
  • American Institute of Steel Construction(AISC), 8,167,182,204,213,223,246
  • Artificial joint restraint(AJR), 225-226
  • Axially loaded column
  • analysis, 325-327
  • design, 327-329
  • Axial tensile/compression stress, 117
  • Axial tension member design
  • roof truss, 130-131
  • sawn lumber and GLULAM, 129-130
  • tensile capacity, 129
  • B
  • Balanced snow load
  • exposure factor, 34-35
  • importance factor, 33-34
  • partial loading, 37
  • procedure, 31-32
  • roof slope,definition, 31
  • roof slope factor, 35
  • thermal factor, 34
  • Beam-column member
  • with sidesway, 216
  • without sidesway, 215
  • Beams
  • reinforced concrete
  • analysis, 285-286
  • coefficient of resistance, 282
  • internal couple method, 280
  • moment arm, 280
  • reinforcement design, 287-288
  • section design, 288-290
  • specification, 284-285
  • stress distribution, 280-28l
  • stability factor
  • bracing requirements, 119
  • buckling effect, 119-120
  • effective unbraced length, 120-121
  • Euler-based LRFD critical buckling stress, 120
  • lateral deformation, 118
  • Bearing-type steel connections
  • combined shear and tension, 252-255
  • nominal unit shear strength, 246
  • shear Failure, 245
  • tearing-out,plate, 246
  • tensile failure, 246
  • Block shear strength
  • single-angle member, 172
  • tensile plate, 172-173
  • three-bolt connection, 173-174
  • welded member, 173
  • Bolted steel connections
  • A307 steel, 241
  • high-strength bolt types, 243-244
  • Building design
  • AISC specifications, 10
  • allowable stress design(ASD), 7-9
  • ASCE 7-05, 4
  • classification, 3-4
  • codes, 3
  • design strength, 9
  • elastic and plastic designs
  • elastic moment capacity, 12
  • full plastic moment and state, 11
  • plastic hinge, 11-12
  • plastic moment capacity, 12-13
  • yield strength value, 10
  • load combinations
  • dead,live and snow loads, 16
  • dead,live,snow,and earthquake loads, 17
  • dead,live,snow,and wind loads, 17
  • earthquake and dead loads, 18
  • types, 15-16
  • wind and dead loads, 18
  • load distribution, 5,7
  • load factor, 7
  • load resistance factor design(LRFD), 7-8
  • parallel framing system, 4
  • service load, 7
  • standard unit loads, 3
  • stress-strain relation, 7-8,11
  • triangular loaded frame, 5
  • ultimate/yield strength(stress), 9
  • working stress design(WSD)method, 7
  • C
  • Column interaction diagram
  • application, 334-335
  • characteristics, 334
  • tied columns
  • on all faces, 460-461
  • circular spiral column, 461-462
  • on end faces, 459
  • Column stability factor
  • buckling length coefficients, 133
  • effective length factor, 132
  • Euler critical buckling stress, 133-134
  • slenderness ratio, 132
  • Combined forces,steel members
  • axial compressive load, 219
  • braced frame design, 218-223
  • compression-flexure force,beam-column member
  • with sidesway, 216
  • without sidesway, 215
  • design approach, 213
  • joist girders, 232-233
  • magnification factor
  • moment modification factor, 216-217
  • slenderness ratio, 217
  • sway, 223-225
  • open-web steel joists
  • floor system, 229
  • shear and bending moment, 231
  • simply supported uniformly loaded truss, 230
  • tensile-flexure force, 213-215
  • unbraced frame design, 225-229
  • Components and cladding(C and C)
  • adjustment factor, 48,61
  • importance factor, 48,61
  • minimum pressures, 67
  • roof overhang, 61,66
  • topographic factor, 61
  • wind force, 68
  • wind pressure, 61-65
  • Composite column, 321-322
  • Compression steel members
  • compression table use, 188-192
  • effective length factor,slenderness ratio
  • alignment chart, 183-185
  • slenderness limit, 184
  • stiffness reduction factor, 185
  • Euler formula, 182
  • flexural buckling, 181-182
  • flexural-torsional buckling, 181-183
  • limit states, 186-187
  • local buckling criteria, 182
  • non-slender members
  • available critical stress, 188-189
  • elastic buckling, 187-188
  • flexural buckling, 186-187
  • flexural-torsional buckling, 188
  • inelastic buckling, 187
  • steel type, 188
  • slender members, 188
  • stiffened,unstiffened elements, 182-183
  • strength of, 181-182
  • torsional buckling, 181-182
  • Concrete
  • column interaction diagram
  • on all faces, 460-461
  • circular spiral column, 461-462
  • on end faces, 459
  • diameter,area and unit weight, 443
  • group areas, 443,456
  • minimum required beam widths, 444
  • p balanced values, 456
  • reinforced members
  • axially loaded column(see Axially loaded column)beam stress distribution, 299-300
  • column interaction diagram, 334-335
  • column specification, 324-325
  • diagonal cracking, 300-301
  • flexural members(see Flexural reinforced concrete members)
  • long/slender column, 321,338
  • pedestal column, 321
  • shear capacity, 305-310
  • shear stress,concrete, 302-303
  • short column(see Short column)
  • spiral column, 323-324
  • stirrup types, 303-304
  • torsional reinforcement, 310-313
  • truss analogy theory, 301-302
  • web(shear)reinforcement(see Web(shear)reinforcement concrete)
  • reinforcement ratio versus resistance coefficient, 445-446,448-450,453-455
  • resistance coefficient, 447,451-452
  • spirals,size and pitch, 457
  • Concrete mix design, 277
  • Connections,steel
  • beam-to-column frame connection, 261-262
  • bearing-type
  • bearing failure, 245
  • combined shear and tension, 252-255
  • nominal unit shear strength, 246
  • shear failure, 245
  • tearing-out,plate, 246
  • tensile failure, 246
  • bolted connections
  • A307 steel, 241
  • high-strength bolt types, 243
  • slip-critical connection, 243-244
  • bolts spacing and edge distance, 244
  • fillet welds, 257-258
  • groove/butt welds, 257
  • moment-resisting connection, 266-268
  • shear/simple connection
  • framed-beam, 262-263
  • seated-beam,end-plate, 262-263
  • single-plate, 262
  • single-plate shear, 263-266
  • slip-critical, 249-251
  • combined shear and tension, 255-256
  • slip(friction)coefficient, 249
  • tensile load on bolts, 251-252
  • types, 241-243
  • welded, 256-257
  • weld strength, 258-261
  • complete joint penetration(CJP), 258
  • partial joint penetration(PJP), 258-259
  • Conversion factors, 343
  • Cracking moment, 278
  • Cut thread/rolled thread wood screw, 384
  • D
  • Dead loads, 23
  • Design response spectrum
  • long-period transition period, 81-82
  • spectral acceleration, 80,83
  • steps, 80-81
  • Design spectral acceleration, 79
  • Diagonal concrete cracking, 300-301
  • Dowel-type fasteners
  • adjustment factors, 149-150
  • design equation, 145
  • modes of yielding, 147
  • E
  • Earthquake loads
  • design
  • horizontal and vertical acceleration, 88
  • horizontal members and elements, 92
  • redundancy factor, 89
  • two-story wood frame structure, 89-91
  • vertical members and elements, 91
  • importance factor, 83
  • seismic design categories(SDC), 83-84
  • seismic forces
  • definition, 71
  • distribution, 86-88
  • equivalent lateral force procedure, 84-86
  • vibration mode, 71
  • seismic parameters
  • adjusted spectral response accelerations, 75-79
  • design response spectrum, 80-83
  • design spectral acceleration, 79
  • free vibration, 71
  • fundamental period,definition, 71,75
  • fundamental time, 75
  • ground spectral response maps, 72-78
  • Effective length factor,slenderness ratio
  • alignment chart, 183-185
  • slenderness limit, 184
  • stiffness reduction factor, 185
  • Elastic and plastic designs
  • elastic moment capacity, 12
  • full plastic moment and state, 11
  • plastic hinge, 11-12
  • plastic moment capacity, 12-13
  • yield strength value, 10
  • Elastic lateral torsional buckling(E-LTB)zone, 201
  • Euler-based LRFD critical buckling stress, 120
  • Euler formula, 182
  • F
  • Fasteners
  • bearing strength, 147
  • dowel-type fasteners
  • adjustment factors, 149-150
  • design equation, 145
  • modes of yielding, 147
  • embedded strength, 146-147
  • fastener bending yield strength, 147
  • Fillet welds, 257-258
  • Flange local buckling(FLB), 201-202
  • Flexural buckling, 181-182,186-187
  • Flexural reinforced concrete members
  • compression strength, 277-278
  • concrete beam
  • analysis, 285-286
  • coefficient of resistance, 282
  • internal couple method, 280
  • moment arm, 280
  • reinforcement design, 287-288
  • section design, 288-290
  • specification, 284-285
  • stress distribution, 280-281
  • design strength, 278-279
  • LRFD, 279-280
  • one-way slab
  • analysis, 292
  • definition, 290-291
  • design, 293-294
  • specification, 291
  • reinforced concrete properties, 277
  • reinforcing steel strength, 279
  • steel percentage, 283-284
  • strain diagram and failure modes, 282-283
  • strength reduction factor, 284
  • two-way slabs,definition, 291
  • Flexural steel members
  • beam deflection limitation, 207-209
  • beam relation, 204
  • classification limit magnitude, 203
  • compact full plastic limit, 202-203
  • cross bracing, 200-201
  • deflection loading constants, 208
  • design, 199,204-205
  • E-LTB zone, 201
  • FLB, 201-202
  • flexure strength, 199
  • I-LTB zone, 200-201
  • lateral bracing,compression flange, 200
  • lateral unsupported length, 199-200
  • limiting states of beam design, 204
  • LTB, 199-200
  • N-FLB, 203
  • nominal moment strength, 200-201
  • plastic zone, 200
  • S-FLB, 203-204
  • shape classification limits, 202
  • shear strength, 206-207
  • slender beam sections, 201-202
  • Flexural-torsional buckling, 181-183
  • Flexure and axially loaded wood structures
  • amplification factor, 135-136
  • axial tensile/compression stress, 117
  • axial tension member design
  • roof truss, 130-131
  • sawn lumber and GLULAM, 129-130
  • tensile capacity, 129
  • beam design, 117
  • beam stability factor
  • bracing requirements, 119
  • buckling effect, 119-120
  • effective unbraced length, 120-121
  • Euler-based LRFD critical buckling stress, 120
  • lateral deformation, 118
  • bearing at supports
  • adjusted compressive design value, 128
  • bearing area factor, 128-129
  • bearing design, 127
  • bending criteria, 117-118
  • column design, 132
  • column stability factor
  • buckling length coefficients, 133
  • effective length factor, 132
  • Euler critical buckling stress, 133-134
  • slenderness ratio, 132
  • deflection criteria, 123-127
  • load and bending moment, 136
  • P-Δ moment, 135
  • shear criteria, 122-123
  • Flexure-shear cracks, 300
  • Flexure strength, 199
  • Floor live loads
  • design, 24-25
  • effective area reduction factor, 24-26
  • impact factor, 27
  • load control, 26
  • Frame connections
  • moment-resisting, 266-268
  • shear or simple, 262-263
  • single-plate, 263-266
  • G
  • Glued laminated timber(GLULAM)
  • adjusted reference bending design value, 118
  • adjusted reference compression design value, 132
  • adjusted reference shear design value, 122-123
  • adjustment factors
  • curvature factor, 110
  • fiat use factor, 108
  • volume factor, 110
  • reference design values, 107-108
  • structure, 107
  • tensile capacity, 129-130
  • Groove/butt welds, 257
  • I
  • Inelastic lateral torsional buckling(I-LTB)zone, 200-201
  • Internal couple method, 280
  • J
  • Joist girders, 232-233,436-442
  • L
  • Lally column, 321
  • Laminated veneer lumber(LVL), 112-113
  • Lateral torsional buckling(LTB), 199-200
  • Leeward snow drift, 39-41
  • Live loads
  • floor live loads
  • design, 24-25
  • effective area reduction factor, 24-26
  • impact factor, 27
  • load control, 26
  • roof live loads
  • slope reduction factor, 27-28
  • tributary area reduction factor, 27
  • Load resistance factor design(LRFD)
  • adjustment factors, 102
  • building design, 7-8
  • concrete design, 279-280
  • design stress value, 101
  • format conversion factor, 100-101
  • nail and screw connections, 155
  • sawn lumber, 98
  • steel members, 429-435
  • wood specifications, 101-106
  • Local buckling criteria, 182
  • Long/slender column, 321-322,338
  • LTB,see Lateral torsional buckling
  • LVL,see Laminated veneer lumber
  • M
  • Magnification factor
  • moment modification factor, 216-217
  • slenderness ratio, 217
  • sway, 223-225
  • Main wind force-resisting system(MWFRS)
  • adjustment factor, 48
  • exposure category, 48
  • horizontal force,story-transverse wind, 57
  • horizontal pressure distribution, 57
  • horizontal pressure zones, 53,56
  • importance factor, 48
  • minimum pressure, 54
  • procedure, 53-55
  • two-story framed building, 57
  • vertical force,roof-transverse wind, 59
  • vertical pressure distribution, 59
  • vertical pressure zones, 53-54,56
  • wind effects/torsion loading, 47
  • wind pressures, 49-52
  • windward and leeward pressure, 48
  • Modulus of rupture, 278
  • Moment modification factor, 216-217
  • MWFRS,see Main wind force-resisting system
  • N
  • Nail and screw connections
  • LRFD factors, 155
  • nail specifications, 156
  • wood screw specifications, 156-157
  • The National Design Specifications(NDS), 97-98,100,147,149,152
  • Nominal moment strength, 200-201
  • Noncompact flange local buckling(N-FLB), 203
  • Non-slender members
  • available critical stress, 188-189
  • elastic buckling, 187-188
  • flexural buckling, 186-187
  • flexural-torsional buckling, 188
  • inelastic buckling, 187
  • steel type, 188
  • O
  • One-way slab, 290-291
  • analysis, 292
  • definition, 290-291
  • design, 293-294
  • specification, 291
  • Open-web steel joists
  • floor system, 229
  • shear and bending moment, 231
  • simply supported uniformly loaded truss, 230
  • P
  • Parallel strand lumber(PSL), 112-113
  • Pedestal column, 321
  • R
  • Rain-on-snow surcharge, 35-37
  • Reference design values
  • sawn lumber
  • allowable stress design(ASD), 98
  • definition, 97
  • format conversion factor, 100
  • LRFD, 98
  • repetitive member factor, 100
  • resistance factor, 101-102
  • size factor, 100
  • timber categories, 97-98
  • time effect factor, 99
  • wood
  • bolts, 385-387
  • cut thread/rolled thread wood screw, 384
  • diaphragm factor, 153
  • end grain factor, 153
  • geometry factor, 151-153
  • group action and temperature factor, 149,151
  • lag screws, 388-390
  • nail and spike values, 380-381
  • shear connections, 148-149
  • structural composite lumber, 376
  • structural glued laminated softwood timber, 372-375
  • toenail factor, 153-155
  • visually graded timbers, 362-364
  • wet service factor, 149
  • wire,box/sinker nails, 377-379
  • withdrawal loads, 149
  • wood screws, 382-383
  • Reinforced concrete members
  • axially loaded column, 321-323
  • analysis, 325-327
  • design, 327-329
  • beam stress distribution, 299-300
  • column interaction diagram
  • application, 334-335
  • characteristics, 334
  • column specification, 324-325
  • diagonal cracking, 300-301
  • flexural members
  • compression strength, 277-278
  • concrete beam(see Beams) design strength, 278-279
  • LRFD, 279-280
  • One-way slab, 290-294
  • reinforced concrete properties, 277
  • reinforcing steel strength, 279
  • steel percentage, 283-284
  • strain diagram and failure modes, 282-283
  • strength reduction factor, 284
  • two-way slabs,definition, 291
  • long/slender column, 321,338
  • pedestal column, 321
  • shear capacity
  • analysis, 305-307
  • design, 307-310
  • shear stress,concrete, 302-303
  • short column, 321
  • analysis, 335-336
  • balanced axial load, 332
  • design, 336-338
  • equivalent force system, 329-330
  • large axial load, 331-332
  • no appreciable axial load, 333-334
  • Only axial load, 330-331
  • small axial load, 332-333
  • spiral column, 323-324
  • stirrup types, 303-304
  • torsional reinforcement, 310-313
  • truss analogy theory, 301-302
  • web(shear)reinforcement
  • beam strength, 301-302
  • shear stress, 303-304
  • specification, 304-305
  • Ridge snow drift, 37-39
  • Roof live loads, 27-28
  • S
  • Sawn lumber
  • engineering properties, 97
  • reference design values
  • allowable stress design(ASD), 98
  • definition, 97
  • format conversion factor, 100
  • LRFD, 98
  • repetitive member factor, 100
  • resistance factor, 101-102
  • size factor, 100
  • timber categories, 97-98
  • time effect factor, 99
  • SCL,see Structural composite lumber
  • Seismic design exemptions, 84
  • Seismic forces
  • definition, 71
  • distribution
  • horizontal elements, 87-88
  • lateral force resisting system(LFRS), 86
  • vertical wall elements, 86-87
  • response modification factor, 85-86
  • seismic response coefficient, 85
  • structure weight, 85
  • vibration mode, 71
  • Seismic parameters
  • adjusted spectral response accelerations, 75-79
  • design response spectrum
  • long-period transition period, 81-82
  • spectral acceleration, 80,83
  • steps, 80-81
  • design spectral acceleration, 79
  • free vibration, 71
  • fundamental period,definition, 71,75
  • fundamental time, 75
  • ground spectral response maps, 72-78
  • Shape factor, 13
  • Shears,moments and deflections, 345-347
  • Shear stress, 122,299-300
  • Shielded metal arc welding(SMAW), 256-257
  • Short column
  • analysis, 335-336
  • design, 336-338
  • equivalent force system, 329-330
  • moment effect
  • balanced axial load, 332
  • large axial load, 331-332
  • no appreciable axial load, 333-334
  • only axial load, 330-331
  • small axial load, 332-333
  • Single shear connection
  • bolts, 385-387
  • lag screws, 388-389
  • wire, box/sinker nails, 377-379
  • wood screws, 382-383
  • Slender compression members, 188
  • Slender flange local buckling(S-FLB), 203-204
  • Sliding snow load, 43-44
  • Slip-critical connections, 249-251
  • combined shear and tension, 255-256
  • slip(friction)coefficient, 249
  • Snow loads
  • balanced snow load
  • exposure factor, 34-35
  • importance factor, 33-34
  • partial loading, 37
  • procedure, 31-32
  • roof slope,definition, 31
  • roof slope factor, 35
  • thermal factor, 34
  • rain-on-snow surcharge, 35-37
  • sliding snow load, 43-44
  • unbalanced snow load
  • leeward snow drift, 39-41
  • ridge snow drift, 37-39
  • windward snow drift, 39,41
  • Southern pine GLULAM, 368-371
  • Spiral column, 321-324
  • Standard dressed(S4S)sawn lumber, 350-351
  • Steel Joist Institute(SJI), 229-232
  • Steel members
  • axial compression strength, 427
  • combined forces
  • axial compressive load, 219
  • braced frame design, 218-223
  • compression-flexure force, 215-216
  • design approach, 213
  • joist girders, 232-233
  • moment modification factor, 216-217
  • open-web steel joists, 229-231
  • slenderness ratio, 217
  • sway magnification factor, 223-225
  • tensile-flexure force, 213-215
  • unbraced frame design, 225-229
  • compression
  • alignment chart, 183-185
  • compression table use, 188-192
  • Euler formula, 182
  • flexural buckling, 181-182
  • flexural-torsional buckling, 181-183
  • limit states, 186-187
  • local buckling criteria, 182
  • non-slender members, 186-189
  • slender members, 188
  • slenderness limit, 184
  • stiffened,unstiffened elements, 182-183
  • stiffness reduction factor, 185
  • strength of, 181-182
  • torsional buckling, 181-182
  • connections
  • A307 steel, 241
  • beam-to-column frame connection, 261-262
  • bearing failure, 245
  • bolts spacing and edge distance, 244
  • combined shear and tension, 252-255
  • fillet welds, 257-258
  • groove/butt welds, 257
  • high-strength bolt types, 243
  • moment-resisting connection, 266-268
  • nominal unit shear strength, 246
  • shear failure, 245
  • shear/simple connection, 262-263
  • single-plate shear, 263-266
  • slip-critical, 249-251,255-256
  • tearing-out,plate, 246
  • tensile failure, 246
  • tensile load on bolts, 251-252
  • types, 241-243
  • welded, 256-257
  • weld strength, 258-261
  • design guide,LRFD, 436-442
  • dimensions data sheet
  • C shape, 403-406
  • W shape, 392-402
  • flexural members
  • beam deflection limitation, 207-209
  • beam relation, 204
  • classification limit magnitude, 203
  • compact full plastic limit, 202-203
  • cross bracing, 200-201
  • deflection loading constants, 208
  • design, 199,204-205
  • E-LTB zone, 201
  • FLB, 201-202
  • flexure strength, 199
  • I-LTB zone, 200-201
  • lateral bracing, compression flange, 200
  • lateral unsupported length, 199-200
  • limiting states of beam design, 204
  • LTB, 199-200
  • N-FLB, 203
  • nominal moment strength, 200-201
  • plastic zone, 200
  • S-FLB, 203-204
  • shape classification limits, 202
  • shear strength, 206-207
  • slender beam sections, 201-202
  • moment versus unbraced length, 428
  • properties and dimensions
  • angles, 407-412
  • pipe HSS, 425-426
  • rectangular HSS, 413-418
  • round HSS, 422-424
  • square HSS, 419-421
  • tension
  • bolts pattern, 170-171
  • bolt-type connection, 174
  • limit states, 169
  • net area, 170
  • properties, 167
  • shear lag factor, 171-172
  • single-angle member, 172
  • tensile plate, 172-173
  • three-bolt connection, 173-174
  • truss analysis, 176
  • 2005 unified design specifications, 167-168
  • warren roof truss, 175
  • welded member, 173
  • Stiffened,unstiffened elements, 182-183
  • Stirrup types, 303-304
  • Stress-strain curve, concrete, 277-278
  • Structural composite lumber(SCL), 112-113,376
  • adjusted reference bending design value, 118
  • adjusted reference compression design value, 132
  • adjusted reference shear design value, 122-123
  • Structural glued laminated softwood timber, 372-375
  • Submerged arc welding(SAW), 257
  • Sway magnification factor, 223-225
  • T
  • Tensile strength
  • bolts pattern, 170-171
  • limit states, 169
  • net area, 170
  • shear lag factor, 171-172
  • Tied column,see Spiral column
  • Torsional buckling, 181-182
  • Truss analogy theory, 301-302
  • Two-way slabs, 291
  • U
  • Ultimate strength design(USD)method, 279
  • Unbalanced snow load
  • leeward snow drift, 39-41
  • ridge snow drift, 37-39
  • windward snow drift, 39,41
  • V
  • Visually graded dimension lumber, 353-357
  • Visually graded southern pine dimension lumber, 359-361
  • Visually graded timbers, 362-364
  • W
  • Web local buckling(WLB),see Flange local buckling(FLB)
  • Web(shear) reinforcement concrete
  • beam strength, 301-302
  • shear stress, 303-304
  • specification, 304-305
  • Web-shear cracks, 300
  • Welded steel connections, 256-257
  • Weld steel strength, 258-261
  • complete joint penetration(CJP), 258
  • partial joint penetration(PJP), 258-259
  • Western species GLULAM, 365-368
  • Wind loads
  • ASCE 7-05, 47
  • components and cladding(C and C)
  • adjustment factor, 48,61
  • importance factor, 48,61
  • minimum pressures, 67
  • roof overhang, 61,66
  • topographic factor, 61
  • wind force, 68
  • wind pressure, 61-65
  • main wind force-resisting system(MWFRS)
  • adjustment factor, 48
  • exposure category, 48
  • horizontal force,story-transverse wind, 57
  • horizontal pressure distribution, 57
  • horizontal pressure zones, 53,56
  • importance factor, 48
  • minimum pressure, 54
  • procedure, 53-55
  • two-story framed building, 57
  • vertical force,roof-transverse wind, 59
  • vertical pressure distribution, 59
  • vertical pressure zones, 53-54,56
  • wind effects/torsion loading, 47
  • wind pressures, 49-52
  • windward and leeward pressure, 48
  • Windward snow drift, 39,41
  • Wood
  • connections
  • bolts, 158
  • diaphragm factor, 153
  • end grain factor, 153
  • fasteners, 145-147
  • geometry factor, 151-153
  • group action and temperature factor, 149,151
  • lag screws, 158-159
  • nail and screw connections, 155-157
  • shear connections, 148-149
  • toenail factor, 153-155
  • types, 145
  • wet service factor, 149
  • withdrawal loads, 149
  • yield limit equations, 147-148
  • yield mechanisms, 147-148
  • flexure and axially loaded structure
  • adjusted compressive design value, 128
  • amplification factor, 135-136
  • axial tensile/compression stress, 117
  • axial tension member design, 129-131
  • beam design, 117
  • beam stability factor, 118-121
  • bearing area factor, 128-129
  • bearing design, 127
  • bending criteria, 117-118
  • column design, 132
  • column stability factor, 132-134
  • deflection criteria, 123-127
  • load and bending moment, 136
  • P-Δ moment, 135
  • shear criteria, 122-123
  • reference design values
  • bolts, 385-387
  • cut thread/rolled thread wood screw, 384
  • lag screws, 388-390
  • nail and spike values, 380-381
  • structural composite lumber, 376
  • structural glued laminated softwood timber, 372-375
  • visually graded timbers, 362-364
  • wire,box/sinker nails, 377-379
  • wood screws, 382-383
  • section properties
  • southern pine GLULAM, 368-371
  • standard dressed(S4S)sawn lumber, 350-351
  • western species GLULAM, 365-368
  • size factor
  • visually graded dimension lumber, 353-357
  • visually graded southern pine dimension lumber, 359-361
  • specifications
  • GLULAM(see Glued laminated timber)
  • LRFD design, 101-106
  • sawn lumber, 97-102
  • structural composite lumber(SCL), 112-113
  • Y
  • Yield limit equations, 147-148
  • Yield limit theory, 146-147

本文ここまで

Copyright © 2012 National Diet Library. All Rights Reserved.

フッター ここまで